
Muscid Flies

DIPTERA: Muscidae house fly, face fly, horn fly, stable fly

Muscid Flies

Where they're produced

Horn fly - fresh manure Face fly - fresh manure

Range and pasture

House fly – organic material, garbage, feces, wet media to support aerobic microbial fermentation

Stable fly – mixture of organic material (feed, manure, soil) and moisture (water, urine) Confined animal facilities

Horn Fly

Life History

Egg: oblong, white, 25 – 30 per day Larva: legless, tapered, feed on wet substrate,

<u>Pupa</u>: barrel shaped <u>Adult</u>: house fly shape

Developmental time: 1 to 3 weeks in summer

Horn fly

Piercing mouthparts

- Lacerates skin
- Ingest blood: ♂& ♀
- Obtain all nutrients from blood

Horn Fly

- Most common summer time pest on pastured cattle
- Adult flies spend 95% time on animal
- Prefer mature, weaned cattle
- · Both sexes feed on blood, 25X per day
- Bites are painful

Horn Fly

- US losses estimated @ \$100 million
- 300+ flies for > 1 month WILL:
 - Reduce calf weaning weights (10 20 lb)
 Decrease milk production
- Stocker cattle
- Weight reduction (up to 18%)
- Expend energy
 Defensive responses (tail flicks, head tosses, restless)
 Spend more time walking, less time grazing

_		
_		
_		
_		
_		
_		
-		

Horn Fly

Management

Mechanical Biological Chemical

- direct application
- self-application
- sustained release devices

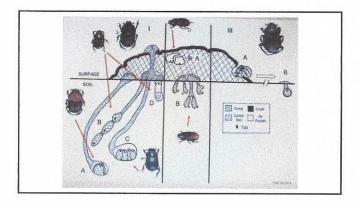
Horn fly management

Mechanical

· Physically removing flies from cattle

http://www.youtube.com/watch?v=vANO6NV8-Jo

Horn fly management


Biological

- Wasp parasites
 - Parasitize pupae
 - Releases across range and pasture labor and cost intensive
 Short dispersal distances
 Parasitism rate is low (5% seasonal average NE)
- Predators
 - Staphylinids and histerid beetles
 Feed on eggs, larvae and pupae
- Competitors for same food source

 - Dung beetles
 Reduce dung accumulation

 - Improve pastures
 Increase fertility, improve soil structure,

Horn fly management Chemical

Direct Application

- Sprays and pour-ons
- Avermectins (ivermectin and generics)
- Pyrethroids
- Spinosad
- 2 6 wk horn fly control

Horn fly management

Chemical

Self-application: Dust bags, oilers

- · Forced-use is best
- 75 80% control
- 1 bag per 10 20 mature cattle
- · Check weekly

Horn fly management

Self-application

Oilers/backrubbers

Chain wrapped with burlap Diesel + insecticide (1 gal : 1 pint)

Pyrethroids, Co-Ral, Ravap

Horn fly management

Sustained release

- Altosid + mineral tub
- Target consumption 4 oz per head per day
- 1 tub per 20 30 animals
- IGR passed out in manure, kills fly larvae
- · Flies migrate, area wide control necessary

Mineral Supplement + IGR insecticide

- Tub and loose mineral
- Cattle separated (% 1 mi)
- Free choice 4 oz. per day
- · Tubs weighed weekly
- Mineral supplied as needed
- Manure pats collected weekly (treated and control)
- Fly counts taken weekly

Loose Mineral Supplement + IGR insecticide

Conclusions

- · Consumption excellent (> 4 oz per day per head)
- Very good larval control
- No effect on adult flies
- · Flies will migrate to treated cattle from untreated cattle (1/2 to 1 mile not enough)
- · Migrating flies affected outcome

Horn fly management

Insecticide ear tags

- Revolutionized horn fly control
- Insecticide slowly released
 Distributed through hair coat
- Kills horn flies on contact

Horn fly management

Insecticide impregnated ear tags **Advantages**

- · ease of application,
- · long duration of efficacy,
- small amounts of insecticide is placed in the environment and only on specific targets, and
- · reduced risk to applicators

Horn fly management

Disadvantages

- Cost
- Resistance

Horn fly management

Resistance Management

- ✓ Alternate ear tag chemistry
- \checkmark Alter application methods
- ✓ Don't tag before onset of fly season
- √Tag bulls, cows, steers, not calves
- √Remove tags at end of fly season

Summary Horn Fly Control

- Dust bags / Oilers
 - Good control, no resistance problems
 - Weekly checking, repair\replace bags
- Feed additives and boluses
 - Convenient
 - No effect on migrating flies
- Sprays / Pour-on
 - Economical
 - $\\ \textbf{Multi-applications}$
- Insecticide ear tags
 - Easy to apply
 - Resistance

Muscid Flies

Face fly Musca autumnalis

- Nonbiting fly
- Introduced in North America in 1952
- · Prefers temperate, moist areas
- Common in parts of Montana
- Females feed on facial secretions

Face Fly

- •Eggs deposited in fresh manure
- •Larvae feed in manure
- Pupate in soil
- Adults active from

April - October

Overwinter as adults

Face Fly

Mouthparts

- Spongy with prestomal teeth
- Can't cut skin
- Ingest liquids
- Common among other filth flies

Face fly Feeding abrades eye tissues House Fly Face Fly

Steer after 5 days of confinement with house flies

Steer after 5 days of confinement with face flies

Face fly

Effects on cattle

- General annoyance
- · Damage eye tissue
- · Mechanical vector of pinkeye
- Moraxella bovis
- · Biological vector of eyeworm, Thelazia

Face Fly Management

- Mechanical
- BiologicalChemical