Grazing Management: Part Science-Part Art

International Mountain Section Society for Range Management

-Great Falls, Montana

Clayton B. Marlow, Animal and Range Sciences Department Montana State University, Bozeman

Pre-European Grazing Management

Montana's Range Livestock Industry

- No range livestock until after Little Bighorn (1876)
- Cattle and sheep numbers mushroom from '78 to 1902
- 1891-1897 Federal reserves created
 - Westerners resent
 "recommendations by eastern scientific men"
- 1915-1920 Passage of more "Homestead Acts" increase western livestock numbers
- 1920 sheep and cattle markets plummet

Management of the Federal Reserves

1897- FS Organic Act

- Forest reserves for protection of watersheds and timber production
 - Grazing NOT listed
- Secretary could authorize use to "preserve forests from destruction"
 - "tramp" sheep grazing and fires were primary dangers
- Colville Report (1898)
 - Recommends permits to hold sheep numbers to levels that will not damage forage

Forest Service Regulations - 1907

- Livestock Associations advise FS on allotment assignments
 - Preference to neighboring landowner
- Grazing permit fees
- Regulations
 - Grazing not "injurious to water supply"
 - All grazing under permit
 - Permit sets district, numbers, off and on dates

Management for Non-Forest Reserves

Mizpah-Pumpkin Creek Grazing District (1928)

- Grazing leases
- Restrict numbers
- Fences, stock ponds
- 1931; 20% better forage

Foundation for Grazing Service (BLM) Lands

Limited Success

FIGURE 41.-DEPLETION IN THE DIFFERENT OWNERSHIP CLASSES e advantages of grazing management are indicated by the smull percentages of seve or extreme depletion on the national-forest ranges in contrast with other ownerships.

64946°—36—9

• The Western Range

- Western ranges seriously depleted
- Recommended
 - Soil surveys
 - use of "imported" species and plant development
- Taylor Grazing Act
- Soil Conservation Service

Northern Great Plains 1916-1940

System	Stocking Rate	ADG	Condition
Continuous 1 5 month season	0.26 aums/ac	2.1	static
Continuous 2 5 month season	0.30 aums/ac	2.0	static
Continuous 3 5 month season	0.50 aums/ac	1.7	Slight decline
Continuous 4 5 month season	0.70 aums/ac	1.5	decline
Deferred rotation (73 more pounds	0.5 aums/ac of gain on 88% of land b	1.8 Dase compared to C	static C3 and C4)

Season of Use

(Blaisdell and Pechanec 1949)

Utilization Becomes A Topic

• NGP Research (1916-1940)

- ADG is measure
- 25% residual
- Bighorn NF Research (1963)
 - Soil type affects grazing response
 - -40 to 45% to maintain
 - Lighter use to improve

Hormay Rest Rotation

- Designed to re-establish new plants
 - Deferment for vigor
- Stocking Rate
 - By pasture
- Utilization Level
 - 60-75% expected
- Any season
 - Grazing during seed ripe
- Regrazing desirable
 Don't drive livestock

Interval Between Bites

Note! Blaisdell and Pechanec recorded nearly full recovery with supplemental watering

Stocking Rate More Important than System

(Van Poolen and Lacey 1976)

Improvement in Range Condition

13% for implementing any grazing system
35% for adjusting SR downward from heavy to light
28% for adjusting SR down from moderate to light
West TX; ≤ 40% use of annual growth maintains range condition under yearlong grazing

Attitude of Manager More Important than System

(Erhardt and Hansen 1997)

General Rules

- Most if not all grazing animals will be highly selective of both species and individual plants
 - Highest during active plant growth
 - Lowest in uniform, mature stands
- Plant recovery is dictated by temperature and available soil moisture
 - Defoliation near end of soil moisture (temperature) = no opportunity to recover (CHO only 7-9 days)
- Utilization levels indicate length of recovery period
 - Light, infrequent use = short rest

Discussion Points

Redneck Hauling 7

SQUIZZLE.COM

- What can we really control?
- What escapes our best intentions?